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ABSTRACT 

We present some results in topological dynamics and number theory. The 
number-theoretical results are estimates of the rates of convergence of sequences 

(l/n) Y~ Xto,B)(ie): n > 0 , 
t=O 

where na is irrational, a is taken mod 1, and 0 < ~ < 1. One of these results is 
used to construct a homorphism T of a compact metric space X such 
that the minimal flow (X,T) had no nontrivial homomorphic images, i.e. 
is a prime flow. We define an infinite family of such flows, and describe other 
interesting properties of these flows. 

Section 1 

Certain familiar concepts in number theory have analogues in topological 

dynamics. In this paper, we shall be concerned with the notion of a minimal 

prime flow, i.e., a minimal flow with no factors except the trivial ones. Easy 

examples of such flows are the minimal flows on a prime number of points. Here, 

we shall construct an infinite prime flow. This example has a surprisingly easy 

realization; it is essentially obtained by carefully introducing a delay into an 

irrational rotation on the circle. Another realization in the bisequence space on 

{0,1) is obtained by doubling the ones in a Sturmian sequence. Thus, by starting 

with an equicontinuous flow with many obvious factors, we can construct a 

minimal, strictly ergodic flow on a metric space which has no factors. 

In Section 1, we introduce the class of flows which will be the subject of our 

discussion, and indicate preliminary properties such as weak mixing and mini- 
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mality. In Section 2, we prove a technical result which is used in Section 3. In 

Section 2, we also prove some related results about irregularities of distribution 

in an arbitrary minimal flow, and point out the implications of these results for 

some problems in diophantine approximation. In Section 3, we prove that our 

examples possess a property which we call POD, and in Section 4 we show several 

properties of POD flows, including their primality. For example, a POD flow is 

disjoint from every minimal flow except extensions of itself, and is disjoint from 

every power of itself. 

We first define the flows which will concern us. A detailed proof of our assertions 

can be found in [6, Example 1]. By a flow (X, T) we mean a homomorphism T 

of a compact Hausdorff space. We let K denote [0,1) with addition modulo one. 

Let ct ~ g be irrational and fl ~ 0. Define f :  K ~ {0,1} by f(?) = Zto.~l(?) and for 

n~Z,  define xo(n)=f(nT). Then x o ~ S =  YI'_~{0,1} and if a: S ~ S is the 

shift on S (ax(n) = x(n + 1)), and if X = O,(Xo)- (the orbit closure of x), then 

the flow (X, a) is called a Sturmian flow of type (ct,/~). Define T,: K ~ K by 

T,(~,) = ~ + cc We assume /3 r Zct. 

PROVOSt'rIoN 1.1 (cf. [6, Th. 4.1]). The flows (X,a) and (K,T,) are minimal. 

There is a homomorphism p : ( X , a ) ~ ( K , T , ) ,  p(tr"xo)= n~, such that p-l(y) 

is a singleton unless y~E  = (Zct) U(/3 + Zct), in which case p-l(y) is two points. 

Moreover, ifp-l(O) = {Xo,2o} and p-1(/3) = {yo,)7o} with Xo(0) = yo(0) = 1, then 

2o(0) = )70(0 ) = 0 and for n ~ O, xo(n ) = 2o(n) and yo(n) = Po(n). 

Next we define the flow induced from (X, tr) which will turn out to be a prime 

flow. Let B = {x ~ X I x(0) = 1}, and let A be a homeomorphic copy of B such that 

X n A = J Z I ,  with q ~ : B ~ A  ahomeomorphism. Let Y = X u A  and define 

�9 : Y ~ Y  by 
~b(y) if y ~ B 

~F(y) = ~ tr(dp-i(y)) if y cA  
t 
L a(y) if y ~ X - B. 

If  we ignore most of the "doubled"  points in X by assuming that B looks like 

[0,/3] and X - B looks like [8,1], then a picture of Y might be as shown in Fig. 1, 

where the action of a on X is given by solid arrows and the action of W by dashed 

arrows. Note that y = o ' 2 x  = trflCX. 

PROVOSmON 1.2 (cf. [6, remark followingTh. 4.1]). (Y,~) is weakly mixing 

and minimal. 



28 H. FURSTENBERG ET AL. Israel J. Math., 

A 

I ~ " -  1 

x 0 x B YO YO Y 

Fig. 1 
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x 0 

are sequences {nk} ~-Z +, 

lim k a"~(Xo) = lim k am"(2o). 

n > 0 we have 

PROOF. Minimality is clear because (X, tr) is minimal. 

For weak mixing, let g be a continuous eigenfunction of (Y, q0 with eigenvalue 

2, i.e. g(W(Y)) = 2 g(Y) for y e Y. If  h denotes the restriction of 9 to X ~ Y, and 

if we define u(x) = 1 + x(0) for x e X, then h(a(y)) = ),(x) h(y). Now it follows 

from Proposition 1.1 that Xo, 20 are positively and negatively proximal, i.e. there 

{ink} ~_ Z -  such that limk crnk(Xo) = limk tr~k(2o) and 

Notice that u(r u(~(2o)) for n # 0, so for 

h(a"(Xo)) h(an(Xo)) h(tr(Xo) ) 
h(xo ) = h(trn-l(Xo)) "'" h(xo ) 

_ h(an(Xo)) h(tr(2o))2,,(.%)_,,Cxo)_h(o"(2o))2,,(.~o)-,,(~o)" 
h(a n- 1(2o)) h(2o) h(2o) 

By taking n = nk> 0 and letting k ~  oo, we obtain h(2o)= 2"(~~176 

= 2- ~h(xo). A similar calculation with the negative {mk} shows that h(xo) = h(2o), 

so we conclude 2 = 1. Since (Y, q0 is minimal, this implies g is constant. Thus, 

every continuous eigenfunction of (Y,~F) is constant, so by E4], (Y,W) is weakly 

mixing.  

Section 2 

Our principal goal in this section is a specific result (Corollary 2.3) about the 

distribution of translates of the sequence {n,} ~ K. We will obtain this result as a 

corollary of a more general one concerning an arbitrary minimal flow (K, T) 

with K compact Hausdorff. 

For the next theorem, we fix subsets A and B of K, and Xo e K, where (K, T) 

is a minimal flow. We are interested in the boundedness of the quantity 

n - 1  

N(n) = • )ca(Tixo) - zn(T'xo). 
i = 0  

We define g(T"xo)= xa(T"xo)-  xs(T"xo) on the orbit of Xo, and let F denote 
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the set of points in K 1o which g cannot be extended continuously. Define the 

bisequence too(n) = g(Tnxo) for integers n. Then mo is an element of the space of 

bisequences on the symbols {0,1, - 1}, and we let M denote the a-orbit closure 

of mo in this bisequence space, where a is the shift, am(n) = m(n + 1). 

THEOREM 2.1 With notation as above, we make the following assumptions: 

1) (M,a)  is minimal. 

2) The map lr(anmo)=Tnxo can be extended to a homomorphism 

~: (M, a) ~ (K, T). 

3) There is x 1 E K whose orbit does not intersect F. 

4) There is z ~ F with 0(z) n F = {z}. 

Then N(n) is unbounded for n > O. 

PROOF. We will assume that N(n)= ~'=omo(i) is bounded and will obtain 

a contradiction. By Lemma 2.2 below, there is some f s  C(M) with 

(*) re(O) = f (am)  - f (m)  for all m ~ M. 

Now let U = {x E K : f  assumes more than one value on rr-l(x)}. Since f may be 

taken to be integer-valued, U is closed. Notice that F is just the set of points x in 

K such that {m(0): m E lr- l(x)} contains more than one point. Thus xl ~ U since 

~-1(xl) is one point by Assumption 3. By Assumption 4, {m(0): m s zr-l(z)} is 

more than one point, and so it follows from (*) that z or Tz is in U. We first 

consider the case T z s  U. It follows from Assumption 4 that if n > 0, then 

{re(n): m ~ ~-  l(z)} is a single point, and this and (*) imply that Tnz E U for n > 0. 

Since {Tnz: n > 0} is dense in K, this implies that K = U, a contradiction. An 

analogous argument yields a contradiction in case z ~ U, so we have shown that 

no such f exists, and the proof is completed. 

LEMMA 2.2 (cf. 1-2, 14.11"]). I f  (M,a)  is an arbitrary minimal flow and 

g ~ C(M), then a necessary and sufficient condition for there to exist f ~  C(M) 

with f o a  - f =  g is that for some mo ~M, the sums ~i%og(aimo) are bounded 

for n > 0 .  

PROOF. Necessity is clear since " i ]~i=og(a too) =f (a"+lmo)  - f ( mo ) .  Con- 

versely, suppose that Y~"= o g(almo) is bounded for n > 0 and define homomorphisms 

R and T~ (for s ~ R) o f M  x R by R(m, t) = (am, t + g(m)) and T,(m, t) = (m, t + s). 

Since R"(mo, O) = (a"mo, " ~ -  1 ,aim ~ ~i=ogt  o)) for n > 0, it follows that the set of limit 

points of {R'(mo, 0) In > 0) is compact, and so it contains a minimal set N. If  
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p: M x R - ~ M  is the projection, then p ( N ) =  M since M is minimal. Now we 

claim that for m ~M,  there is a unique f ( m ) ~  R with (re, f  (m) )~N .  For if 

(m, f (m)) ,  (re, f  ( m ) +  5)~ N, then by minimality we must have T~N = N, so 

T,~N = N for n ~Z  and since N is compact, 5 = 0. Clearly the function f thus 

defined is continuous and satisfies f ( a m ) - f ( m ) =  g(m) for m ~M. 

COROLLARY 2.3. Let K denote [0, 1) considered as the compact group of reals 

mod 1, and pick an irrational a ~ K  and O ~ f l ~ K .  Fix 7 , 7 ' ~ K  and set 

A = [~, 7 + fl), B = [7', 7' + fl). Then 

N(n) = ~ XA(ia) -- z~(ia) 
i=O 

is bounded for  n > 0 iff f l~Za or 7 -  7 ' ~Za. 

PROOF. Notice that for a, b ~ K ,  [ a , b ) = { c ~ K : a < c < b }  if a < b  and 

[a,b) = [a,1) t3 [0,b) if b < a. Define T~: K-~ K b y  T(x) = x + ~. If 7 - 7' = kot, 

then A = T ~ B  so IN<n)l---Ikl for all n. Similarly, if f l=kot,  then since 

Ztr,r') - Zt~+a,7'+B) = Za - ~(B and Tk[7 ,7  ') = [7 + fl,7' + fl) we again have 

INCh)l_-< Ikl �9 
Now we assume that fl (~ Za and 7 - 7 ' r  Za and will prove that N(n) is un- 

bounded. I f  either r - 7' - fl ~ Z* ~ or 7' - r - fl~ Z cot, where Z * = Z - {0}, 

then we claim that we can apply the theorem, with (K, T) = (K, T~) and Xo = 0, 

to conclude that N(n) is unbounded for n > 0. 

To this end, we will check each assumption of  the theorem. Let mo, F, M, etc. 

be as in the theorem, and for x E K, set h(x) = ~(A(X) -- ZB(X). We remark that in 

this case, F = {7, 7 + fl, 7', 7' + fl} is the set of  discontinuities of  h, so F contains 

at most four distinct points. First we verify Assumption 2: we suppose that 

limian'mo = ml and that ~, ~ + 5 are cluster points of {ni~}, and we must show 

5 = 0. Since limlh((ni + n)~) = ml(n) and ~ + ha, ~ + 5 + no~ are cluster points 

of {(n~ + n)ot} for n sZ ,  it follows from our previous remark that h(~ + not) 

= h(~ + 5 + n~) whenever both ~ + not and ~ + 5 + not are not in F. This implies 

that h ( x ) =  h(x + 6) for x ~F  ~)(F + 5), and for our function h, this clearly 

implies 5 = 0. For Assumption 1, if ml =l imia" 'mo,  then choose {k~} _qZ so 

that the sequence {k~ + n(m~)} decreases to 0. Since h(x) is right continuous and 

F is finite, limia~'m~(n) =l imih(n(ml)  + niot + net) = too(n) for n s Z ,  so 

m o S ~ , ( m O - ,  proving minimaiity of  (M,a).  Assumption 3 is clear since F is 

finite. For  Assumption 4, choose z = 7  if 7 - 7 ' - f l ( ~ Z C ' a  and z = 7' if  

7' - ~' - f l # Z  ~ .  
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The remaining case, when p,? - ?' ~Z0~ and ? - ?' - B, ?' - ? - f l~Z  ~ ,  

requires a bit more work. Notice that assumptions 1-3 of Theorem 2.1 still hold. 

We assume 7' - ~ - fl = k0~, k > 0, the case k < 0 being similar. We claim that 

7t-1(? +B)  = {ml,m2} where (**) m2(0 ) -  ml(0) = m 2 ( k ) -  ml(k)  = 1 and 

ml(n) = m2(n) for n ~ 0, k. This is because {m(n)l m ~lr - l (y  + fl)} is one point 

unless ~, + fl + n~ ~F,  i.e. unless n = 0 or n = k, and for x ~ {7 + P,? + fl + k~}, 

we have h(x - )  - h(x +) = 1, where h(x- )  = lmy~h(y),h(x+)=limyl~,h(y).  Now 

the proof  proceeds as in the proof of  Theorem 2.1. If N(n) is unbounded, there is 

f e  C(M) satisfying (*). By Assumption 3, K r U. It follows from (*) and (**) that 

( f (a  k+ lm2) - f ( a  k+ lml))  - ( f (m2)  - f ( m O )  = Ek=o m2(i) -- ml(i) = 2, so one of 

lr(ml) or zr(a k+ ira1) is in U. If ~(ml)~ U, then since {re(n)] m ~ rr-l(? + fl)} is 

one point for n < 0, {zc(m0 + n~] n < 0} is in U. and since this set is dense, we 

have the contradiction K = U. If  zc(ak+lmOE U, then similarly K = U, so the 

proof is completed. 

Theorem 2.1 is related to the ergoclic theorem in that if ~ is an ergodic in- 

variant probability measure for a flow (K, 7") and #(A) = #(B), then the ergodic 

theorem implies that for almost alt x o e K  we have lim~_~oo N(n)/n = O. One 

might then ask whether the quantities 

n - 1  

E (xa(Tixo) - #(A)) 
i = O  

are bounded. A partial answer is given by the following theorem. 

THEOREM 2.4. Let (K, T) be a minimal flow, and f ix  x o e K  and A c_ K. 

Define mo(n) = ;c4(T"xo), and let M denote the orbit closure of mo under the 

shift a. l f  (M,a)  is minimal, then 

n--1 

(zx(Tixo) - 6) 
i = 0  

is bounded for  n > 0 only if exp(2~i 6 ) i s  the eigenvalue of a continuous 

eigenfunction of the flow (M, a). 

PROOF. If 

n- - I  

~, (xA(Tixo) - 6) 
i = 0  

is bounded for n > 0, then since (M, a) is minimal, we can apply Lemma 2.2 and 

find a continuous function h: M ~ R with 
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L4(Tnxo) - 6 = h(a ~+ tmo) - h(a~mo) 

for n ~Z. Thus exp(2ni(h(a~+~mo)- h(a~mo)) = e x p ( -  2ni6), and since 

{anmo: n ~Z} is dense in M and h is continuous, it follows that exp(2nih(am)) 

= e xp ( -2n i 6 ) e xp (2n ih (m) ) fo r  all m ~ M .  Thus H ( m ) = e x p ( - 2 n i h ( m ) )  is a 

continuous eigenfunction of (M,a)  with eigenvalue exp(2ni6). 

REMARK 2.5. The main result of 1-3] is a special case of Theorem 2.4 if we take 

(K, T) = (K, T~), Xo = 0, A = [0,fl), with 0r irrational and fl # 0. In this case it is 
~ ' ~ n - l :  : T i x  ", proved in 1.3] that z,~=otX,4t o) -.fl)  is hounded if and only if exp(2ni fl) is 

an eigenvalue of M; that is, if and only if fl ~Ze. 

Section 3 

In this section we study the particular flow (Y, ~ )  defined in Section 1. Our goal 

is to show that it is a POD flow. 

DEFINITION 3.1. A flow (Y, qJ) is called proximal orbit dense, or a POD flow 

if (Y,W) is totally minimal and whenever x , y ~ Y  with x ~ y ,  then for some 

n ~ 0, Why is proximal to x. 

REMARK. Recall that a minimal flow (Y, ~)  is totally minimal iff no factor of 

(Y, qJ) is a rotation on a finite ( >  1) number of points. 

DEFINITION 3.2. Recalling the notation of Section 1, define 0" Y - , X  by 

O(x) = x if x ~X and O(x)= W-l(x) if x cA,  and set ~ = po 0, so T: Y--, K. 

LEMMA 3.3. Let  x , y ~ Y  with z ( x ) - z ( y ) = k ~ ,  for k some nonnegatioe 

integer. Then there is an integer m with k < m < 2k and ~(tF~*y) = ~(x). 

PROOF. Notice that for any y ~ Y we have ~(W2y) = ~(y) + 2~ where 2 is 1 or 2. 

The lemma easily follows. 

PROPOSITION 3.4. I f  x , y  ~ Y, x ~ y, and T ( x ) -  z ( y ) =  k~, for k some non- 

negative integer, then for  some n ~ O, x is asymptotic to Why. 

PROOF. Notice that by asymptotic, we mean positively or negatively asympto- 

tic. By Lemma 3.3, we can find a nonnegative integer m with z0I'my) = T(x). The 

cases when x ~ {~F m+ ~y, Wmy, ~m-ly} can be handled directly, since points which 

are equal are asymptotic. We therefore assume that x ~ {~Fr'+ly,~pmy, Wm-ly} 

and this along with z(~my) = z(x) implies that 0 or fl is in the orbit of z(x). By 

carefully considering the possibilities, one sees that there is an integer j with 

"C(u~j+my)---"C(U~JX)E(O, fl}. We consider only the case z(WJx)=fl,  the other 
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being similar. Then since WJXr Wj+my, qJJ+m--ay), we must have 

(v~J+~y,~FJx) equal to either (Yo,Yo} or (~Yo,97o}. Now 97o is positively 

asymptotic to WYo and negatively asymptotic to Yo. This means that WJx is asym- 

ptotic to two distinct points in the set (wJ+"+ ~y, ~F j+", qjj+m-ly}, and the pro- 

position follows. 

Proposition 3.4 implies that points (x,y)~ Y x Y, satisfying x ~ y and 

r(x) - z(y)~Z~, also satisfy the POD condition. We now turn to the other 

points in Y x Y. We fix xl ,Yl  ~ Y with z(xl) - z(yOr 

LEMMA 3.5. Let x6  Y, and for n 6 Z  + define c,(x) = ~kn=l~x(~kx) .  Then for 

n e Z  + we have 

c.(x) 
Z Ox(j) = zA(x) + Z x.(VJx). 

j = O  j=O 

PROOF. We first consider the case x ~ X. A straightforward induction shows 

that for n > 1, ac~ = ~P"x whenever ~"x~X .  This provides the key step in 

the proof by induction that 

c.(x) 

Z XB(aJx)= ~2 XB(~Jx) for n s Z  +. 
j = o  j = o  

Noticing that for x ~ X, Ox(j) --- ZB(trJx), we have proven the lemma if x E X. 

Now if x r X, then x E A, and thus ~F- ix e X. In this case c,(q'-  Ix) = c,_ a(x), 

so applying the above result to qJ-Xx we have 

c .  _ ~ (x) 

ZB(trAF- ix) = ~ ZB(W j -  ix) for n > 1. 
j = O  j=O 

Since in this case O(x) = 0(~-ix) ,  it follows that Xs(trJW - ix) = Ox(j), and further- 

more Xs(~-lx)  = 1, so we have shown 

C n  - -  1 ( X )  11 - -  1 

Z Ox(j)=l + Y~ Z~(~Jx) for all n > l ,  
j=O j = 0  

which proves the lemma in the case x 6 A, so the proof is completed. 

LEMMA 3.6. The expression c , (xl ) -Cn(yl)  is unbounded as a function of 

nEZ  +. 

PROOF. Suppose on the contrary that ] . -1 ~]j=o Xx(WJxx)-Zx(WJYl)[ < D for 

n e Z  +. Then since W(B) = A, and A = Y -  X, we have 
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n--1 

:Co x.(WxO- x.(wyo I 

Israel J. Math . ,  

n 

= x.(Wx0- x.(wyO I 

t=~ qJJYx = Zx(~PJxl) - )~x( ) ~ D. 
j 1 

Now choose m > 1; then there is some n > 1 with E ~ ~=1Zx(q~Jxl) = m and we set 

~.=x Xx(qJ@x) = m', so [ m -  m'[ < D. Now pick n' so that ]~'= x Xx(q~Jyl) = m. 

Since whenever ~F~xCX, then both ~J+Xx and q~-~x are in X, we have 

[ n - n'] < 2D. Now taking x = xa in Lemma 3.5, we have 

and similarly 

Thus 

c . ( x t )  

OxI(j) ~. 2 0 X I ( j ) = ) ~ A ( X 1 )  dr ~ )~B(k~JXl), 
j = 0  j = O  j = 0  

Oyx(j)= za(yl) + ~ )~B(U~Jyl). 
j = 0  j = 0  

i E ~, Ox,(j) - Oy,(j) I <= 2 + Z,(UlJx,) - Z,(V@,) 
j j =  

n' i 
+ ~, )~8(~JXl) - IB("Wy1) I < 2 + 3D. 

j = n + l  I 

Since m was arbitrary, this contradicts Corollary 2.3 (notice that Ox(j) 

= Zfo,pl(zx + net) if ~x + nee  {0,fl}). Q.E.D. 

LEMUA 3.7. For any toe K there exist x2 ,y  2 ~ O ( x l , y O -  with z(x2) - z(y2) 
(-D. 

PROOF. Notice that z(~"x) = z(x) + c,(x)e for n > l, so z(~"xl) - ~(~"Yl) 

= Z(Xx) - z(yl) + (c,(xO - c,(yO)e. Since c,(xl)  - c,(yO is unbounded and 

changes in increments of _+ 1, its range contains either Z+~ or Z - e ,  both of 

which are dense in K, proving the lemma. 

PROPOSITION 3.8. I f  z (x l )  -- z ( y l ) ~ Z e ,  then for  some n ~ O, ~"Y l  is proximal  

t o  x 1 . 

PROOF. By Lemma 3.7 we can find (x2, Y2) ~ r Y0- with z(x2)-z(Y2) e Z+e.  

Applying Proposition 3.4, we see that for some n r 0, x2 is proximal to ~"Y2. 

This implies that xx is proximal to ~"Yl, and the proposition is proved. 

Together, Propositions 3.4 and 3.8 imply that if x, y ~ Y with x # y, then for 
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some n # 0, W"y is proximal to x. Furthermore, (Y, qJ) is totally minimal, since 

it is weakly mixing and minimal [4,3.1], and thus we have shown that (Y,~)  

is POD. 

Section 4 

In the previous sections, we have shown the existence of a class of POD flows. 

In this section, we turn to the general study of such flows. For this section (Y,~),  

(X, ~b), etc. denote arbitrary minimal flows. 

REMARKS. 

1. We first note that in a POD flow (Y,~), i fx  ~ Y a M  P(x) is the set of points 

proximal to x, the r = Y. 

2. We will often use the following condition, which is easily seen to be equivalent 

to  POD:  (Y,~) is totally minimal and if (x , y )EY•  Y with x ~ y ,  then 

(~(x,y)- _~ F n for some n ~ 0, where F n = {(x,~nx): xE Y} is the graph of ~ .  

The equivalence follows since x is proximal to ~b~y iff (~(x, ~bny)- ~_ {(z, z)[ z ~ Y}. 

3. A weaker condition than POD is: (Y,~P) is totally minimal and the only 

minimal sets in Y x Y are the graphs In, n ~Z. We do not know whether this 

weaker condition implies that (Y, ~ )  is prime. 

DEFINITION 4.1. A minimal flow (Y,~) is prime if given any homomorphism 

~: (Y,~)-~(X,~b) onto a nontrivial flow (X, ~b), then ~ is an isomorphism. 

Prime flows were first investigated in [5]. 

THEOREM 4.2. Let (Y,~P) be a POD flow. Then (Y,~) is prime. 

PROOF. Let ~ be as in Definiiion 4.1 and for the purpose of contradiction, 

assume ~ is not an isomorphism. Define R = {(x,y): ~(x) = ~(y)}. Then we can 

pick (x, y) E R, x ~ y, and by Remark 2, R _ F~ for some n ~ 0. Then (x, ~ x )  ~ R 

and since Y is minimal, this implies that (X, ~) is a rotation on a finite number of 

points. This contradicts the assumption that (Y,~) is totally minimal, and the 

theorem is proven. 

Recall that two minimal flows (Z, p) ,  (Y,~') are disjoint iff the product 

(Z x Y, p x ~ )  is minimal. If (Z,p) is a factor of (Y,W) or, equivalently, (Y,~) 

is ao extension of (Z,p), then clearly (Z,p) and (Y,~) are not disjoint. 

THEOREM 4.3. Let (Y,W) be a POD flow. I f  (Z,p) is not an extension of 

(Y,W), then (Z,p) and (Y,W) are disjoint. 
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PROOF. Let A be a minimal subset of Y x Z. We shall show that A = Y x Z. 

Since (Z,p) is not an extension of (Y,W), there exist x , y ~ Y  with x # y  and 

z E Z with (x, z), (y, z) ~ A. Then since (x,W"x) ~ O(x,y)- for some n # 0 by 

Remark 2, we can find z ' ~ Z  with (x,z'), (W"x,z')~A. Now for every m~Z,  

Wmxidz  is an isomorphism from ( Y x Z ,  W xp )  onto itself. Since 

qJ" x idz(A ) n A has been shown to be nonempty, and A is minimal, qJ" x idz(A ) 

= A. Finally, fix z E Z. Then for some x ~ Y, (x, z) ~ A. It follows that for every 

integer j, (WJ"x,z)~A. Since (Y,W) is totally minimal, Cv , (x) -=  Y, and hence 

Y x {z} _ A. Since z is arbitrary, we have A = Y x Z, as desired. 

COROLLARY 4.4. Let (Y,~F) be a POD flow, and (Z,p) a minimal flow. Then 

1. (y, qs) and (Z,p) are disjoint iff (Y,W) and (Z,p) have no common factors 

except the trivial flow. 

2. I f  (Z,p) is prime then either (Z,p) is isomorphic to (Y,W) or they are 

disjoint. 

THEOREM 4.5. Let (Y,W) be POD. Then (1) (Y,W) is coalescent and its 

automorphism group is { ~ :  n EZ}, (2) (Y,~) is regular, and (3) (Y,~) has no 

roots, i.e., if m ~ +1 then there does not exist a homomorphism c~: Y-~ Y 

with dp m = tp. 

PROOF. 

1) If  ~r: (Y,~)-~ (Y,~t ') is an endomorphism, then R = ((x, lr(x)): x~  Y} is a 

minimal subset of Y x Y, so R = ((x,~nx): x ~ Y }  for some n, and thus 7r(x) 

= ~t'nx for x ~ Y. 

2) This follows directly from the definition of POD and [1, Th. 3.5]. 

3) Suppose m 4 + 1, and ~: Y-o y is a homomorphism with ~m = qj. Then 

is an automorphism of (Y,~t'), so ~ = ~"  for some n. This means that qJ = ~"~, 

contradicting the assumption that (Y,~) is totally minimal. 

The flows defined in Sections 1-3 arose in trying to determine whether the 

conjecture that two minimal abelian flows with no common factor except the 

trivial flow are disjoint is true. If  this conjecture is true, then Theorem 4.3 would 

be true for any prime flow (Y,~). For suppose (Y, ~ )  and (Z,a) are not disjoint. 

This would mean that (Y,W) and (Z,o) have a common factor (W,p). Since Wis 

not a point, and (Y,W) is prime, we must have that (W,p)'~ (Y,~), and thus 

(Z, tr) is an extension of (Y, tlJ). 
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We finally will show that if (Y,~P) is a POD flow and p > i, then (Y,q') is 

disjoint from (Y, qJP). 

DEFINITION 4.6. If (W, 6) is a flow and p a positive integer, we form (Nip, fix) 

as follows: 

p f ( w , i + l ) ,  i ~ p  
w .  = U w •  {i}, a . ( w , i )  = 

~= ~ / . (~w,  1), i = p.  

(See Fig. 2) 

W• Wx{2} Wx {p} 
Fig. 2 

It is clear that if (W, 3) is minimal, so is (Wp, 6p). Moreover, the minimal flow on p 

points is a factor of  (Wp,6p) via the canonical map ~ :  Wp--, W, rcp(w,i) = w. 

LEMMA 4.7. Let (Y,~/) be a POD flow and p an integer with p >  1. 

1) Any factor of (Yp, tFp) is either a factor of the minimal flow on p points or 

it admits the minimal flow on p points as a factor. 

2) No nontrivial factor of (Yp,~Fp) is totally minimal. 

PROOF. Statement 2 of the lemma clearly follows from Statement 1. We denote 

by Rp the relation corresponding to rip, i.e. Rp = (((x,i) ,  (y , i ) ) :  x, y ~  Y, 

1 _< i < p}. Then we must prove that if R is a closed, ~Fp-invariant equivalence 

relation on Yp, then either R _~ Rp or R ~_ Rp. We will assume R ~ Rp, and will 

show that R -_- R~. 

Since R ,  Rp, we can find x, y e Y and 1 < i < j ~ p with ( (x ,  i), ( y , j ) )  ~ R. 

Since (Y,~)  is POD,  we know that for some n e Z ,  (x,W"x) E 0v(x ,y ) -  (if x = y, 

take n = 0). Thus ((~F'x, i), (temy,j)) = ((q~)mp(x, i), (~F,)'P(y,j)) ~ R for m ~ Z  

implies that ((x,  i), (~Wx,j)) ~ R. Now ((W"x,j), (~r:x, 2j - i (mod p))) 
" " 

= qJp (qJ x , ) ) ) E R ,  where r I = 2n or 2n + 1 depending on 

whether 2 j -  i__< p or 2 j -  i >  p, respectively, so rl is defined by p ( r ~ -  2n) 

< 2j - i < p (1 + r I - 2n). By the transitivity of R, ((x, i), (q,r, x, 2 j -  i(mod p))) 

R. Applying this procedure again, ( ( ~ " x , 2 j -  i (rood p)), (~F'~x, 3 j - 2 i  (mod 

p))) ~ R, where r2 is defined by p(r 2 - 3n) < 3j - 2i < p (l + r z - 3n), and again 

by the transitivity of R, we have ((x, i ) ,  (~W~x, 3 j -  2i (mod p ) ) ) o R .  After k 
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steps, we obtain ((x, i), (~P'kx, j + k(j - i) (rood iv))) ~ R, where p(r k - (k + 1)n) 

< j + k( j  - i) < p(1 + rk -- (k + 1)n). Notice that rk # 0 for sufficiently large k. 

Now choose k = pq - 1 where q is large enough so that rk # O. For this choice of k, 

j + k(j - i) - i(modp), so we have shown that for some r # O, ( ( x , i ) , (~rx ,  i ) )  

R. Now applying ( q j y r  successively to ((x, i), (qJSr i)) and using transitivity 

of R, we obtain after j steps that ( (x ,  i), (~FJ'x, i ) ) ~ R .  Since (y,~r)  is minimal 

(because (Y,~) is POD), it follows that ((x, i), (z, i)) ~ R for all z ~ Y. By transi- 

tivity of R, ((w, i), (z, i)) e R for all w, z ~ E Applying qJp for p - 1 successive 

times, we see that ((w,  k), (z, k ) )  ~ R for 1 < k < p, w, z ~ Y, thus R ~ R r Q.E.D. 

THEOREM 4.8. Let  (Y,W) be a POD flow. Then (Y,~F) is disjoint frorn (Y,~F p) 

for  any integer p > 1. 

PROOF. First we claim that (Y, qJ) is disjoint from (Yp, q~p). If  not, then by 

Theorem 4.3, (Y,~F) is a factor of (Yp, qJp), so by Lemma 4.6, (y, t[,) is not totally 

minimal, a contradiction. 

Now let x , y , w , z ~  Y. Since (Yx Yp, qJ x qJp) is minimal, for some net (k3, 

~Fk'x ---, w and (wp)k,(y, 0) --~ (Z, 0). Thus eventually, k~ = rip and ( ul,)k, (y, O) 

= (~"y ,0 )  SO qJ"y ~ Z and ~{'  ~ w. We have shown that r215 (x ,y )  is dense 

in Y x Y, so (Y,q') is disjoint from (Y,~F0. 

One might wonder just how prevalent POD flows are, within the class of weak 

mixing minimal flows. If  (X, ~b) is the discrete horocycle flow, then (X, ~b) is 

isomorphic to (X, ~b2), so by Theorem 4.8, (X, ~b) is not a POD flow. 
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